Hydrothermally Stable, Sulfur-Tolerant Platinumbased Oxidation Catalysts

via Surface Modification of

SiO₂ with TiO₂ and ZrO₂

Mi-Young Kim, Jae-Soon Choi, Todd J. Toops Viviane Schwartz

Oak Ridge National Laboratory, USA

Eun-Suk Jeong, Sang-Wook Han

Chonbuk National University, Korea

18th DEER
Dearborn, Michigan
October 17, 2012

Poster Location P-12

TiO₂ & ZrO₂ coating of SiO₂ can lead to Pt catalysts with enhanced performance

- TiO₂ and ZrO₂ coating enhances dispersion & redox capacity of Pt → excellent CO oxidation performance (lower light-off temp)
- TiO₂ and ZrO₂ coating generates surface acidity but low basicity → good sulfur tolerance
- TiO₂ and ZrO₂ coating enhances interaction between Pt & supports → excellent hydrothermal stability

